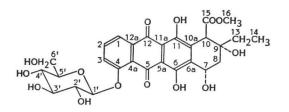
4-*O*-(β-D-GLUCOPYRANOSYL)-ε-RHODOMYCINONE, A NEW MICROBIAL TRANSFORMATION PRODUCT OF RHODOMYCINONE


Sir:

Although the biosynthetic pathway of anthracycline antibiotics has been extensively investigated with daunorubicin¹⁾ and aclarubicin²⁾, details about mechanisms of the glycosidation and formation processes of unusual carbohydrate moieties remain to be revealed. During our biosynthetic studies on anthracycline antibiotics, we found that ε -rhodomycinone (2) was converted to 4-*O*-(β -D-glucopyranosyl)- ε -rhodomycinone (1) (Fig. 1) by the blocked mutant, *Actinomadura roseoviolacea* MuWl³⁾. We report herein the isolation and structure determination of 1.

For the microbial conversion of 2, a medium of the following composition was used; yeast extract 0.4%, meat extract 2%, malt extract 1%and glucose 0.4%. The pH of the medium was adjusted to 7.0 before sterilization. Seed culture (2 ml) and 1 ml of dimethyl sulfoxide solution of 2 (3 mg/ml) were simultaneously added into 100 ml of the medium contained in a 500-ml Erlenmeyer flask. The conversion was carried out by shaking culture on a rotary shaker at 37° C for 2 days.

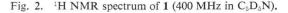
The culture filtrate (500 ml) was adjusted to pH 2.0 and applied to a column of Diaion HP-20 which was washed successively with water and 50% MeOH, and then 1 was eluted with 100% MeOH. The eluate was concentrated to a small volume *in vacuo* and the metabolite was extracted with EtOAc. The solvent fraction was evaporated to dryness *in vacuo* and the residue was subjected to silica gel column chromato-graphy. The column was washed with CHCl₃ - MeOH (10: 1). Further purification was achieved by Sephadex

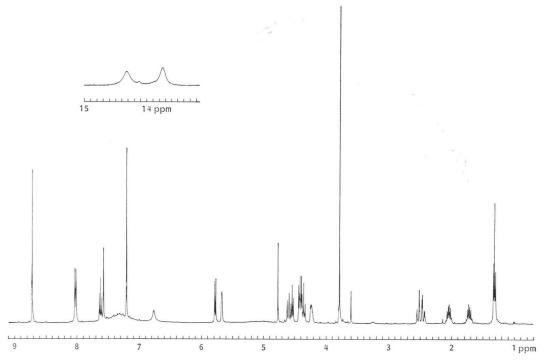
Fig. 1. The structure of 1.

LH-20 column chromatography with MeOH to give 3 mg of 1.

Physico-chemical properties of 1 are as follows: $C_{28}H_{30}O_{14}$, FD-MS m/z 613 (M+Na)⁺, mp 182~183°C, λ_{max} (in MeOH) nm (ε) 234 (46,600), 254 (42,900), 475 (11,800), 494 (12,000) and 526 (6,600), λ_{max} (in MeOH+0.1 N NaOH) nm 210 (ε) (88,300), 250 (45,400), 560 (12,000) and 590 (11,000). These UV spectral data of 1 are identical with those of daunorubicin⁴). Acid hydrolysis of 1 with 0.5 N HCl at 100°C for 30 minutes yielded 2 and D-glucose.

The 400 MHz ¹H NMR spectrum of 1 (Fig. 2)


Table 1. ¹³C NMR spectral data.


$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
12 186.5 186.0 15 171.7 171.6 4 159.6 162.6 11 (157.0) (157.3) 6 (156.1) (157.2) 10a 139.8 139.8 2 135.9 137.3 12a $135.4*$ $**$ 6a 133.7 133.8 3 122.1 119.6 1 121.2 116.6 5a (112.8) (111.8) 11a (111.8) (111.6) 1' 103.4 105.5 5' (79.7) 78.3 2' 75.2 74.9 9 72.4 72.4 4' 71.5 71.6 6' 62.9 62.7 7 62.4 62.3 10 53.1 53.2 16 52.7 52.7 8 36.5 36.3 13 34.0 34.0	Carbon	1	2	Methyl β -D-glucopyranoside ⁵⁾
15 171.7 171.6 4 159.6 162.6 11 (157.0) (157.3) 6 (156.1) (157.2) $10a$ 139.8 139.8 2 135.9 137.3 $12a$ $135.4*$ $**$ $6a$ 133.7 133.8 3 122.1 119.6 1 121.2 116.6 $5a$ (112.8) (111.8) $11a$ (111.8) (111.6) $1'$ 103.4 105.5 $5'$ (79.7) 78.3 $3'$ (78.5) 78.3 $2'$ 75.2 74.9 9 72.4 72.4 $4'$ 71.5 71.6 $6'$ 62.9 62.7 7 62.4 62.3 10 53.1 53.2 16 52.7 52.7 8 36.5 36.3 13 34.0 34.0	5	187.0	190.5	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	186.5	186.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15	171.7	171.6	
	4	159.6	162.6	
10a 139.8 139.8 2 135.9 137.3 $12a$ $135.4*$ $**$ $6a$ 133.7 133.8 3 123.8 124.9 $4a$ 122.1 119.6 1 121.2 116.6 $5a$ (112.8) (111.8) $11a$ (111.8) (111.6) $1'$ 103.4 105.5 $5'$ (79.7) 78.3 $3'$ (78.5) 78.3 $2'$ 75.2 74.9 9 72.4 72.4 $4'$ 71.5 71.6 $6'$ 62.9 62.7 7 62.4 62.3 10 53.1 53.2 16 52.7 52.7 8 36.5 36.3 13 34.0 34.0	11	(157.0)	(157.3)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	(156.1)	(157.2)	
$12a$ 135.4^* ** $6a$ 133.7 133.8 3 123.8 124.9 $4a$ 122.1 119.6 1 121.2 116.6 $5a$ (112.8) (111.8) $11a$ (111.8) (111.6) $1'$ 103.4 105.5 $5'$ (79.7) 78.3 $3'$ (78.5) 78.3 $2'$ 75.2 74.9 9 72.4 72.4 $4'$ 71.5 71.6 $6'$ 62.9 62.7 7 62.4 62.3 10 53.1 53.2 16 52.7 52.7 8 36.5 36.3 13 34.0 34.0	10a	139.8	139.8	
12a133.46a133.7133.83123.8124.94a122.1119.61121.2116.65a(112.8)(111.8)11a(111.8)(111.6)1'103.4105.55'(79.7)78.33'(78.5)78.32'75.274.9972.472.44'71.571.66'62.962.7762.462.31053.153.21652.752.7836.536.31334.034.0	2	135.9	137.3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12a	135.4*	**	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6a	133.7	133.8	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	123.8	124.9	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4a	122.1	119.6	
11a (111.8) (111.6) 1'103.4105.55' (79.7) 78.33' (78.5) 78.32'75.274.9972.472.44'71.571.66'62.962.7762.462.31053.153.21652.752.7836.536.31334.034.0	1	121.2	116.6	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5a	(112.8)	(111.8)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11a	(111.8)	(111.6)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1'	103.4		105.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5'	(79.7)		78.3
9 72.4 72.4 4' 71.5 71.6 6' 62.9 62.7 7 62.4 62.3 10 53.1 53.2 16 52.7 52.7 8 36.5 36.3 13 34.0 34.0	3'	(78.5)		78.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2'	75.2		74.9
6' 62.9 62.7 7 62.4 62.3 10 53.1 53.2 16 52.7 52.7 8 36.5 36.3 13 34.0 34.0	9	72.4	72.4	
7 62.4 62.3 10 53.1 53.2 16 52.7 52.7 8 36.5 36.3 13 34.0 34.0	4'	71.5		71.6
10 53.1 53.2 16 52.7 52.7 8 36.5 36.3 13 34.0 34.0	6'	62.9		62.7
16 52.7 52.7 8 36.5 36.3 13 34.0 34.0	7	62.4	62.3	
8 36.5 36.3 13 34.0 34.0	10	53.1	53.2	
13 34.0 34.0	16	52.7	52.7	
	8	36.5		
14 8.0 8.0	13	34.0	34.0	
	14	8.0	8.0	

In ppm (\hat{o}) ; obtained from $C_{\delta}D_{\delta}N$ solutions containing TMS as internal reference. Similar values in parentheses may be interchanged.

* This value was obtained by suppressing the overlapping solvent peak by ¹³C spin-echo modulation through ¹³C, ²H spin-spin coupling (see ref 6).

** This value could not be obtained due to the overlapping of the solvent peak.

showed signals due to the glucose moiety at $\delta_{\rm H}$ 5.80 (H-1', d, J=7.8 Hz), 4.56 (H-2', dd, J=7.8, 7.8 Hz), 4.43 (H-3', dd, J=7.8, 8.5 Hz), 4.38 (H-4', dd, J=8.5, 8.5 Hz), 4.25 (H-5', m), 4.62 (H-6', dd, J=12.2, 2.0 Hz) and 4.44 (H-6', dd, J=12.2, 5.9 Hz). The anomeric configuration was determined to be β by the large coupling constant between H-1' and H-2'.

The 100 MHz ¹³C NMR spectra of 1 and 2 are summarized in Table 1. The signals of 2 were assigned by reference to those of daunorubicin⁵⁾. Since the chemical shift of C-7 of 1 $(\delta_{c}, 62.4)$ is similar to that of 2, the C-7 position must be free. On the other hand, one resonance due to the quinone carbonyl carbon of 1 (δ_{e} 187.0) is shifted to higher field as compared with the corresponding signal of 2 (δ_{c} 190.5). These data imply that the hydrogen bonding of this quinone carbonyl (C-5 or C-12) is disrupted by the glycosidation of a phenolic hydroxyl function in 1. Thus the glucose must be connected to the oxygen at either 4, 6 or 11. Nuclear Overhauser effect (NOE) and long range coupling observed between the anomeric proton at $\delta_{\rm H}$ 5.80 and the aromatic protons at $\delta_{\rm H}$ 8.03 (2H, due to an overlap of H-1 and H-3) gave conclusive evidence for the final structure of 1. Since

H-1 is located far away from the anomeric proton wherever the sugar is attached, the observed NOE and long range coupling were concluded to be caused by interaction between H-3 and the anomeric proton. Therefore the carbohydrate residue must be connected to C-4 through a glycosidic linkage to establish the structure of **1** as $4-O-(\beta-D-glucopyranosyl)$ - ε -rhodomycinone.

As far as we know, 1 is the first 4-O-glycosylanthracyclinone derivative to be isolated in nature. It is interesting to note that 1 was produced only when 2 was added at lag phase; under this condition carminomycins and akrobomycin were not produced.

4-*O*-(β -D-Glucopyranosyl)- ϵ -rhodomycinone was not active against Gram-positive and Gramnegative bacteria at concentration as high as 1,000 μ g/ml, and did not show any cytotoxicity (100 μ g/ml).

> MASAYA NAKAGAWA HIROYUKI KAWAI YOICHI HAYAKAWA HARUO SETO NOBORU ŌTAKE Institute of Applied Microbiology, University of Tokyo

Bunkyo-ku, Tokyo 113, Japan

(Received July 4, 1985)

References

- YOSHIMOTO, A.; T. OKI, T. TAKEUCHI & H. UMEZAWA: Microbial conversion of anthracyclinones to daunomycin by blocked mutants of *Streptomyces coeruleorubidus*. J. Antibiotics 33: 1158~1166, 1980
- 2) OKI, T.; A. YOSHIMOTO, Y. MATSUZAWA, T. TAKEUCHI & H. UMEZAWA: Biosynthesis of anthracycline antibiotics by *Streptomyces* galilaeus. I. Glycosidation of various anthracyclinones by an aclacinomycin-negative mutant and biosynthesis of aclacinomycins from aklavinone. J. Antibiotics 33: 1331~1340, 1980
- ΝΑΚΑGAWA, Μ.; Υ. ΗΑΥΑΚΑWA, Κ. ΙΜΑΜURA, Η. SETO & Ν. ΟΤΑΚΕ: Microbial conversion of ε-pyrromycinone to 1-hydroxy-11-deoxycar-

minomycin II. J. Antibiotics 38: 821~822, 1985

- 4) DI MARCO, A.; M. GAETANI, P. OREZZI, B. M. SCARPINATO, R. SILVESTRINI, M. SOLDATI, T. DASDIA & L. VALENTINI: Daunomycin, a new antibiotic of the rhodomycin group. Nature 201: 706~707, 1964
- ARNONE, A.; G. FRONZA, R. MONDELLI & A. VIGEVANI: ¹³C NMR analysis of the antitumor antibiotics daunorubicin and adriamycin. Tetrahedron Lett. 1976: 3349~3350, 1976
- 6) YAMASAKI, K.; H. KOHDA, T. KOBAYASHI, R. KASAI & O. TANAKA: Structures of stevia diterpene-glucosides: Application of ¹³C NMR. Tetrahedron Lett. 1976: 1005~1008, 1976
- 7) SCHMITT, P.; J. R. WESENER & H. GUNTHER: ¹³C Spin-echo modulation through ¹³C, ²H spin-spin coupling: elimination of solvent signals and analysis of partially deuterated systems. J. Mag. Res. 52: 511~514, 1983